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anisotropy of this interaction, solid-state spectra of half-integer Tk ( 17K
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of central—1%, <= +%/, transitions. Central single-quantum transi-

tions, however, are not generally sharp; they are affected by second- %g Vi

order quadrupole effects which, even though smaller than their first- §+(l’ / AN ~

order counterparts, can still broaden resonances from chemically | \\ 7 £ RN
inequivalent sites by several kHzZDuring the past few years a § Ig A W4

nu_mbgr of techniques such as multiple-quantum. r.n.agic-ar?gle- Figure 1. Pulse sequence proposed for the acquisition of iso-
spinning (MQMAS), have been proposed for the acquisition of high- tropically resolved exchange correlation spectra on half-integer quadru-
resolution spectra where NMR resonances appear devoid of a||po|gs. In the actual implemgntation of the experiment the following phase
quadrupolar anisotropiésAs the use of these quadrupolar NMR Sy?;)ngosiggn;%\{vzs 55?8 gg fggrzefglf jvgfgéz&loiofn?{g%}o ‘fé
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technlques expands, voids in the current understanding .of how_ Orecord cosine- and sine-modulated data respectivaly;was cycled to
assign the peaks that these methods can resolve become increasinghgtrieve the illustrated coherence transfer pathway.
evident. Among the few unambiguous approaches available for the _
assignme_nt of _solid-sta_lte quadrupole resonances are those rglyingScos(tl,tz,ta) = f f f | (Vigr vg%iso vg?]ist) cos
on the spir-spin coupling between the nuclei under observation : '

- e - it VO 4] exp@v? 1) dvi v dv®.
and their NMR-active neighbofsA number of MQMAS variants iso'l ' “anis PWanis iso " aniso ¥ aniso
have been described and demonstrated where dipolar couplings in 0 0 .
heteronuclear systems involving quadrupoles are monitdirethe Sinltytaty) = f f f |(Visor Vaniso Vanisd SiN
present communicqtion we describg an extgnsion of these measure- Vi + Vg)nis & expdvg%is 12 dVisodVg)nisodVg%iso
ments to an isotropic 3D NMR version applicablenimmonuclear
systems, and the results observed upon app|y|ng such high-FOUl’ier analysis reveals that the cosine-modulated signal will lead
resolution experiments on a model three-8#t¢a salt. to in-phase purely absorptive correlation peaks at coordinates

Monitoring spin-spin couplings between nonbonded homonuclei [%(Viso: iisd» Vanisd» whereasS;i, will yield anti-phase doublets at
commonly relies on exchange-type NMR sequefiaéien dealing ~ the same set of frequencies; 3D hypercofrnplex processing then
with anisotropic line shapes these experiments can reveal, via off- fesults in pre'V_ absorptive(viso, Vg)niso Vgnsc) spectra, with
diagonal cross-peaks, dynamics and relative orientations betweerfluadrature detection along all three frequency axes.
related nuclei. Yet such anisotropic measurements are restricted to  1his 3D MQMAzsslexchangeostrategy was explored on3@

a limited number of inequivalent chemical sites whose patterns do USing the NMR of**Na, a 100% abundant spif- nucleus, as a
not overlap; if this is not the case, resolution can still be achieved M°del- This salt possesses three crystallographically inequivalent
e . .

by introducing a third spectral dimension capable of encoding a S|tesl,awr(1jo§ethMAS powciertllr;e ihz;lpes overllap gtbtheM4.7l\ﬂ;£eld
purely isotropic evolutiof Different strategies can be adopted when ggr?v%ﬁior;gl 2% Fgfgﬁ;ﬂ seuMYASuN ;rg :eexsoe\r/iiwenzs erhibit éx
extending such procedures to multisite spin systems affected by . . 9  E€Xp X R

. . ... .° tensive off-diagonal cross-peaks for this compound (Figure 2A).
second-order quadrupolar anisotropies. One such possibility is These exchange powder line shapes occur despite the absence of
|||ustr.ated in Figure 1. This p_U|Se seqyence re.sembles' a basic SpIIt'protons in this lattice and stem in part from the MAS-driven dipolar
t; zfiltered MQMAS experiment, with the introduction of a

) i ) . . . recoupling induced by modulation of the first-order quadrupolar
redefined evolution period following the multiple- to single-quantum ;. .- tior Figure 3 illustrates the results afforded by the 3D

conversion step. From the conventions illustrated in the Figure it MQMAS NMR experiment when applied on powdered,8@
follows that spins will first undergo a purely isotropic evolution showing an isotropic projection and the single-quantum/single-

1)

viso during the timet, an initial anisotropic encodingf)y, during quantum 2D correlation spectra extracted orthogonal to the isotropic
t, and a final anisotropic precessioff,, during the acquisition  frequencies of individual sites. An unusual distinction between the
time t;. The overall time-domain signal will then be given by exchange line shapes resolved by this 3D NMR experiment-vis-a
vis off-diagonal features in conventional 2D exchange MAS spectra,

*To whom correspondence should be addressed. Fag72-8-9344123. is the asymmetric disposition of the former about the main diagonal.
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holm University, S-106 91 Stockholm, Sweden. as the one in Figure 1 will associate the isotropic evolution to solely
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Figure 2. (A) 2Na 2D exchange NMR spectrum of polycrystalline;Na

SO;, recorded at a spinning rate of 4100 Hz using a mixing time of 500

cross-peaks are dominated by spin-diffusion between sit&sdnd
sites 2>3. A full analysis of these 2D exchange line shapes reveals
that because of null asymmetry parameters, the polar ghgle
between quadrupole tensors of sites 1 and 3 could not deviate by
more than 6 from parallel. This is in very good agreement with
the values estimated by Power on the basis of the compound’s
crystalline structuré2P The right-hand column of Figure 3 sum-
marizes the results arising from the various fits for the individual
sites; when all these data are added up, it becomes possible to
reconstruct the original single-quantum/single-quantum 2D ex-
change MAS NMR spectrum (Figure 2B).

The purpose of this study was to introduce a new experiment

ms. This spectrum was obtained from rotor-synchronous echo and anti- c@pable of extending _2D exchange NMR proFocoIs to the an_a'ySis
echo data sets collected on a laboratory-built NMR spectrometer and probeof homonuclear half-integer quadrupolar spin systems. This se-

operating at a 53.16 MHz Larmor frequency, with 16 sdan86 totalt;

quence bears evident resemblance to other 2D schemes emerging

points, and a 2-s delay between scans. (B) Combined 2D exchange Iinein the solid NMR literaturé? its main difference being the

shape calculated for three mutually exchangifida sites, stemming from
the individual site-resolved line shapes shown in Figure 3.
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Figure 3. (Left) High-resolution 30?*Na NMR spectrum of polycrystalline
N&aSG;, illustrating the 2D exchange slices extracted at the indicated

frequencies. Sites are labeled according to the original liter&fDega were

recorded using the pulse sequence in Figure 1 and conditions as in Figure

2, except for a 3800 Hz spinning rate, 40 and 28 tétandt, points,
315ust; dwell times. 3Q excitation involved an 1ids pulse and a 3@1Q
conversion with four 6.%s optimized FAM pulsesdt/2r = 40 kHz)10
Hypercomplex data sets were combined into a single® f28juency

implementation as a full, isotropically resolved 3D NMR acquisi-
tion. Key to the upscaling of the sequence into a third dimension
was the limited use of multiple rf manipulations, a fact that made
its signal-to-noise comparable to that of conventional MQMAS
acquisitions. An application involving dipole-driven spin diffusion
was stressed in this study; yet it is evident that interesting dynamic
applications could also result. Also important to address is the nature
of the various and often competing processes that can generate
cross-peaks when exchange-type sequences are implemented on
quadrupolar systems, a topic that will be discussed elsewhere at
greater lengti{®
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